WS Annotation of non-standard corpora

Modelling referential choice in natural spoken discourse

Multi-CAST, GRAID, and RefIND

Nils Norman Schiborr University of Bamberg 16 September 2019

multicast.aspra.uni-bamberg.de/

Geoffrey Haig Stefan Schnell Nils Schiborr

Multi-CAST: An overview

- spoken, non-elicited, non-translated language
- chiefly monologic, various narrative genres (folktales etc.)
- 11 corpora from typologically diverse languages
- each corpus contains at least 1000 clause units
- 20 000 clause units in total (c. 85 000 words)
- 10 additional corpora in preparation
- multiple layers of standardized annotation for morphosyntax and referent tracking
- designed as a tool for quantitative, corpus-based typology

Corpus languages

•	language	affiliation	citation
	Arta	Austronesian, Polynesian	(Kimoto 2019)
	Cypriot Greek	I.E., Greek	(Hadjidas & Vollmer 2015)
	English	I.E., Germanic	(Schiborr 2015)
	Nafsan	Austronesian, Oceanic	(Thieberger & Brickell 2019)
	Northern Kurdish	I.E., Iranian	(Haig et al. 2019)
	Persian	I.E., Iranian	(Adibifar 2016)
	Sanzhi Dargwa	Nakh-Daghest., Dargin	(Forker & Schiborr 2019)
	Теор	Austronesian, Oceanic	(Mosel & Schnell 2015)
	Tondano	Austronesian, Polynesian	(Brickell 2016)
	Tulil	Papuan, Taulil-Butam	(Meng 2019)
	Vera'a	Austronesian, Oceanic	(Schnell 2015)

every corpus in the collection is an individually citable resource

Documentation

- extensively documented:
 - what's in it?
 - how's it structured?
 - what's changed?
 - → collection overview
 - how's it annotated?
 - → guidelines for basic schemes
 - → annotation notes for each corpus

Annotations

- time-aligned with audio recordings
- romanized transcriptions

 (alongside original orthographies where applicable)
- idiomatic English translations
- standard morphological glossing (as per Leipzig Glossing Rules)

Annotations

- standardized annotations for
 - morphosyntactic relations (with GRAID, Haig & Schnell 2014),
 - referent identification and tracking (with RefIND, Schiborr et al. 2018), and
 - the information status of newly introduced referents (with a reduced variant of RefLex, Riester & Baumann 2017)

- Grammatical Relations and Animacy in Discourse
 (Haig & Schnell 2014)
- form and syntactic function of major clause constituents
- a uniform set of symbols captures generalized categories
- designed for cross-linguistic comparability
- complements, rather than replaces, morphological glossing

(1) Nafsan (Austronesian, Oceanic)

```
kineu a= pam natam̃ol i= tol su
1sG 1sG.Rs= eat person 3sG.Rs= three PF
##ds pro.1:a =lv v:pred np.h:p =rn rn rv
```

'[The monster said,] "I have eaten three people."'

[mc_nafsan_ntwam_0042]

(np . h : p)
1 2 3

- 1 full noun phrase (form)
- 2 human, third person (animacy)
- 3 direct object (function)

```
( pro . 1 : a )
1 : 3
```

- 1) free definite pronoun (form)
- 2) human, first person (animacy)
- 3 subject of a transitive clause (function)

- glosses align with the (lexical) head of NPs, but target entire phrases
- definition of grammatical roles follows Andrews (2007),
- and is based on language-specific benchmark constructions

- GRAID primarily aims to identify basic syntactic functions
- other elements are left underspecified, or optionally glossed (e.g. NP subconstituents, verbal expressions, etc.)
- basic categories can be refined through optional tags
 (e.g. ⟨pro⟩ → ⟨dem_pro⟩; ⟨:s⟩ → ⟨:s_ds⟩)
- anomalous segments are noted, but left unanalyzed
- includes symbols for zero anaphora and clause boundaries

RefIND

- Referent Indexing in Natural-language Discourse (Schiborr et al. 2018)
- assigns unique indices to individual discourse referents, which are noted every time a referent is mentioned
- allows referents to be identified and tracked through a text
- also: metadata on ontological class of referents
 + hyponymic/meronymic relations between referents

GRAID + RefIND

(2) Nafsan (Austronesian, Oceanic)

```
    kineu
    a=
    pam
    natamol i=
    tol
    su

    1sG
    1sG.Rs=
    eat
    person
    3sG.Rs=
    three
    PF

    ##ds
    pro.1:a
    =lv
    v:pred
    np.h:p
    =rn
    rn
    rv

    0026
    0048
```

'[The monster said,] "I have eaten three people."'

[mc_nafsan_ntwam_0042]

Structure and formats

- WAV, MP3 recordings
- TSV, XML
 transcriptions, translations, annotations, and metadata;
 simple, flexible, and easily adaptable to analysts' needs
 and other existing formats (via XSLT etc.)
- EAF

 for the free, open annotation software ELAN,
 developed at the MPI Nijmegen;
 used by most of our annotators to annotate data
- multicastR
 package for statistical programming language R

corpus	text	uid	gword	gloss	graid	refind
english	kent01	0164	#	#	##neg	
english	kent01	0164	and	and	other	
english	kent01	0164	the	the	ln_det	
english	kent01	0164	house	house	np:dt	0015
english	kent01	0164	#	#	#rc	
english	kent01	0164	0	0_house	rel_0:g	0015
english	kent01	0164	we	1PL	pro.1:s	0014
english	kent01	0164	come	come.PST	v:pred	
english	kent01	0164	in	in	adp	
english	kent01	0164	first	first	other	
english	kent01	0164	%	%	%	
english	kent01	0164	we	1PL	pro.1:s	0014
english	kent01	0164	did-n't	do.pst-neg	lv_aux	
english	kent01	0164	stop	stop.INF	v:pred	
english	kent01	0164	long	long	other	

Companion R package

- ◆ multicastR (Schiborr 2018)
 - for the free statistical programming language R
 - accesses corpus data (and metadata) directly in R, downloaded from our servers
 - allows selection of specific versions
 - plus a few convenience functions
 - can be installed from CRAN or manually from source files on our website

Open science

- restriction free
 - licensed under a *Creative Commons* (CC-BY 4.0) licence or in the public domain
- freely accessible
 from the servers of the University of Bamberg
- open software based on open software and formats
- extensively documented design, structure, and annotations

Replicability

- continuously updated with new and revised material
- keep older versions of the entire collection on record as complete 'snapshots'
- allows exact replication of published research results (if methods are published as well, e.g. as online appendices)
- for our own work using Multi-CAST, plan to include associated scripts in our R package, keeping data and code side-by-side

Archival

- currently:
 all files stored on a webserver
 hosted by the University of Bamberg
- long-term storage:

multicast.aspra.uni-bamberg.de/

first stop: collection overview (PDF) contact information at the bottom of the webpage

Case study

- examine some of the dimensions of referential choice:
 - referent semantics: humanness
 - discourse context: recency

(from a broad top-down perspective, glancing over most detail!)

 using latest Multi-CAST data (from August 2019 + extras) and associated tools (regex, R and multicastR)

Referential choice

- (3) I went along with this old man, Mr Barnes.
- (4) He was a nice old man.

. . .

(5) Ø used to have a team of four great horses.

[mc_english_kent03_0021;0025]

Referential choice

- referring expressions differ in informativity and specificity (e.g. zero vs. full NPs)
- speakers needs to select appropriate forms to facilitate identification of the intended referents by listeners ("recipient design")

Referential choice

 referential choice is influenced in some way by the properties of the preceding discourse

```
    activation states (Chafe 1976, 1994)
```

accessibility (Ariel 1990, 2004; Arnold 2010)

centering (Grosz et al. 1995)

and others (e.g. Kibrik 2000)

topic continuity (Givón 1983)

givenness (Prince 1981; Gundel et al. 1993)

discourse prominence (Gordon & Hendrick 1997)

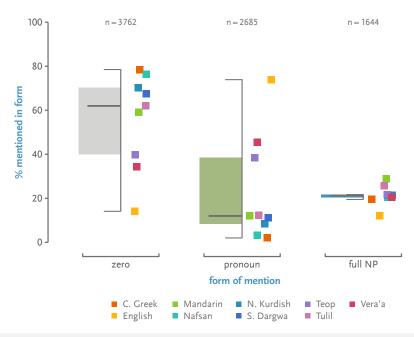
Working with Multi-CAST

- 1. access the data, e.g. via multicastR
- 2. establish sampling criteria
- 3. identify forms of referring expressions
- 4. identify properties of referents and individual mentions

Sampling criteria

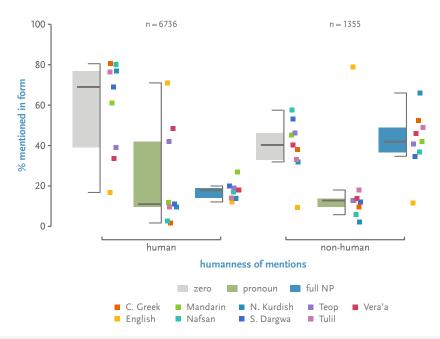
- only subjects (":(a|s|ncs)(\$|_)")
- only mentions of fully referential expressions (i.e. those tracked by RefIND)
- only given mentions

 (i.e. second and subsequent mentions)
- only positions where a pragmatic choice is possible (e.g. no reflexives, gaps in relative clauses)
- only third person mentions (i.e. not first or second person)


The sample

*	corpus	clause units	unique referents	mentions as subject
	Cypriot Greek	1071	99	441
	English	4 184	509	1 3 4 3
	Mandarin*	1197	109	715
	Nafsan	1012	118	692
	Northern Kurdish	1359	120	642
	Sanzhi Dargwa	1066	103	475
	Теор	1 3 0 2	101	771
	Tulil	1 2 6 4	148	590
	Vera'a	3 608	293	2 422
	totals	14866	1 600	8 091

^{* (}Vollmer, in prep.)


Form of mentions

- three basic form types:
 - full noun phrases ('lexical' NPs, e.g. the woman),
 - free pronouns (e.g she, her), and
 - zero anaphora
- all captured by the GRAID annotations:
 - "($^|\W|_)$?np" \rightarrow full NPs
 - "($^|\W|_)$?pro" \rightarrow pronouns
 - "(^|\W|_)?0" → zero

Humanness of mentions

- two values:
 - human or
 - non-human
- regular expressions matching the GRAID annotations:
 - "\.h" → human (+ third person)
 - (non-human third person is unmarked)
 - then filter for first/second person mentions, "\.[12]"

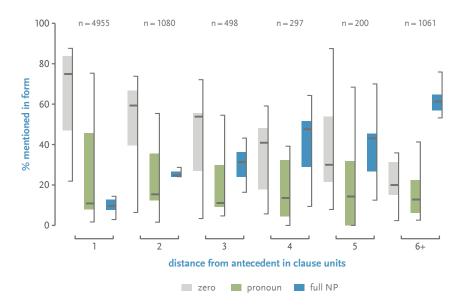
Recency effects

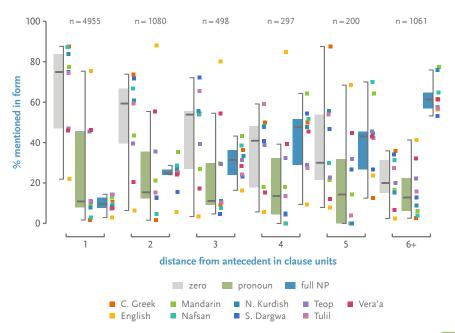
- one factor deemed highly influential: textual distance to a co-referential antecedent (Ariel 1990, Kibrik 2000; NLP pronoun resolution, etc.)
- in other words, how long ago was a specific referent last mentioned?
- unit of measurement: elapsed time, words, clauses, intervening referents, ...

Antecedent distance

gword	graid ##	refind
1	pro.1:s	0000
went with	v:pred adp	
this	ln	
man	np.h:obl	0036
	##	
bla	other	
bla	other	
	##	
he	pro.h:a	0036
had	v:pred	
horses	np:p	0042

Antecedent distance


gword	graid	refind	clause index		
	##		1	\leftarrow	clause boundary
l went with this	pro.1:s v:pred adp ln	0000			
man	np.h:obl	0036			
bla bla	## other other		2	←	clause boundary
he	## pro byo	0036	3	←	clause boundary
ne had	pro.h:a v:pred	WW30			
horses	np:p	0042			


Antecedent distance

gword	graid	refind	cla	use i	ndex
	##		1	\leftarrow	clause boundary
1	pro.1:s	0000	1		
went	v:pred		1		
with	adp		1		
this	ln		1		
man	np.h:obl	0036	1		
	##		2	\leftarrow	clause boundary
bla	other		2		
bla	other		2		
	##		3	\leftarrow	clause boundary
he	pro.h:a	0036	3		
had	v:pred		3		
horses	np:p	0042	3		

Antecedent distance

gword	graid	refind	cla	clause index		
	##		1	\leftarrow	clause boundary	
1	pro.1:s	0000	1			
went	v:pred		1			
with	adp		1			
this	ln		1			
man	np.h:obl	0036	1	\leftarrow	antecedent	
	##		2	\leftarrow	clause boundary	
bla	other		2			
bla	other		2			
	##		3	\leftarrow	clause boundary	
he	pro.h:a	0036	3	\leftarrow	anaphor @ $3 - 1 = 2$ clauses distance	
had	v:pred		3			
horses	np:p	0042	3			

In summary

- most languages have a preferred default form of reference (zero or pronouns)
- strongest inter-corpus variation in zero/pronoun choice
- selection criteria for full NPs are similar across corpora
- human referents less likely to be full NPs than non-human
- rate of zero drops as antecedent distance increases;
 inverse for full NPs

- choice of full NPs over other forms
 - → candidate for a discourse universal?

And more

- also possible with Multi-CAST:
 - phrase weight,
 - role of demonstratives,
 - finer distinctions of referent types (beyond humanness),
 - positional cues (e.g. word order alternations),
 - role continuity,
 - local information pressure,
 - competition between candidate antecedents,
 - semantic predicate types [t.b.a.], etc.

Multi-CAST

- spoken corpora from 11 typologically diverse languages
- chiefly monologic, non-elicited, non-translated language
- ◆ 10 additional corpora in preparation
- time-aligned with audio recordings
- minimum 1000 clauses per corpus
- 20 000 clause units in total (c. 85 000 words)
- multiple layers of annotation for morphosyntax, referent tracking
- for quantitative, corpus-based typology
- restriction-free, designed for replicability
- have a dataset that fits? Contact us!

multicast.aspra.uni-bamberg.de/

- Adibifar, Shirin. 2016. Multi-CAST Persian. In Haig, Geoffrey & Schnell, Stefan (eds.), Multi-CAST.
- Arnold, Avery. 2007. The major functions of the noun phrase. In Shopen, Timothy (ed.), Language typology and syntactic description, Vol. 1, 132–223. Cambridge: Cambridge University Press.
- Ariel, Mira. 1990[2014]. Accessing noun-phrase antecedents. London: Routledge.
- Ariel, Mira. 2004. Accessibility marking: Discourse functions, discourse profiles, and processing cues. Discourse Processes 37(2). 91–116.
- Arnold, Jennifer E. 2003. Multiple constraints on reference form: Null, pronominal, and full reference in Mapudungun. In Du Bois, John & Kumpf, Lorraine & Ashby, William J. (eds.), Preferred argument structure: Grammar as architecture for function, 225–245. Amsterdam: John Benjamins.
- Brickell, Timothy. 2016. Multi-CAST Tondano. In Haig, Geoffrey & Schnell, Stefan (eds.), Multi-CAST.
- Chafe, Wallace. 1976. Givenness, contrastiveness, definiteness, subjects, topics, and point of view. In Li, Charles N. (ed.), Subject and topic, 25–55. New York: Academic Press.

- Chafe, Wallace. 1994. Discourse, consciousness, and time: The flow and displacement of conscious experience in speaking and writing. Chicago: The University of Chicago Press.
- Forker, Diana & Schiborr, Nils N. 2019. Multi-CAST Sanzhi Dargwa. In Haig, Geoffrey & Schnell, Stefan (eds.), *Multi-CAST*.
- Givón, Talmy (ed.). 1983. Topic continuity in discourse. Amsterdam: John Benjamins.
- Gordon, Peter C. & Hendrick, Randall. 1997. Intuitive knowledge of linguistic co-reference. Cognition 62(2). 325–370.
- Grosz, Barbara J. & Joshi, Aravind K. & Weinstein, Scott. 1995. Centering: A framework for modeling the local coherence of discourse. *Computational Linguistics* 21(2). 203–225.
- Gundel, Jeanette K. & Hedberg, Nancy & Zacharski, Ron. 1993. Cognitive status and the form of referring expressions in discourse. *Language* 69(2). 274–307.
- Hadjidas, Harris & Vollmer, Maria C. 2015. Multi-CAST Cypriot Greek. In Haig, Geoffrey & Schnell, Stefan (eds.), *Multi-CAST*.
- Haig, Geoffrey & Schnell, Stefan. 2014. Annotations using GRAID (Grammatical Relations and Animacy in Discourse): Introduction and guidelines for annotators. Version 7.0. (https://multicast.aspra.uni-bamberg.de/#annotations)

- Haig, Geoffrey & Schnell, Stefan. 2019[2015]. Multi-CAST: Multilingual Corpus of Annotated Spoken Texts. (https://multicast.aspra.uni-bamberg.de/)
- Haig, Geoffrey & Vollmer, Maria & Thiele, Hanna. 2019. Multi-CAST Northern Kurdish. In Haig, Geoffrey & Schnell, Stefan (eds.), Multi-CAST.
- Kibrik, Andrej A. 2000. A cognitive calculative approach towards discourse anaphora. In Baker, Paul & Hardie, Andrew & McEnery, Tony & Siewierska, Anna (eds.), Proceedings from the 3rd Discourse Anaphora and Reference Resolution Colloquium (DAARC 2000), 72–82. Lancaster: Lancaster University Centre for Computer Corpus Research on Language.
- Kimoto, Yukinori. 2019. Multi-CAST Arta. In Haig, Geoffrey & Schnell, Stefan (eds.), Multi-CAST.
- Meng, Chenxi. 2019. Multi-CAST Tulil. In Haig, Geoffrey & Schnell, Stefan (eds.), Multi-CAST
- Mosel, Ulrike & Schnell, Stefan. 2015. Multi-CAST Teop. In Haig, Geoffrey & Schnell, Stefan (eds.), *Multi-CAST*.
- Prince, Ellen F. 1981. Toward a taxonomy of given-new information. In Cole, Peter (ed.), Radical pragmatics, 223–255. New York: Academic Press.

- Riester, Arndt & Baumann, Stefan. 2017. The RefLex scheme Annotation guidelines. SpinSpec: Working papers of the SFB 732 14. (http://elib.uni-stuttgart.de/handle/11682/9028)
- Schiborr, Nils N. 2015. Multi-CAST English. In Haig, Geoffrey & Schnell, Stefan (eds.), Multi-CAST
- Schiborr, Nils N. 2018. multicastR: A companion to the Multi-CAST collection. R package version 1.3.0. In Haig, Geoffrey & Schnell, Stefan (eds.), *Multi-CAST*. (https://cran.r-project.org/package=multicastR)
- Schiborr, Nils N. & Schnell, Stefan & Thiele, Hanna. 2018. RefIND Referent Indexing in Natural-language Discourse: Annotation guidelines. Version 1.1. University of Bamberg. (https://multicast.aspra.uni-bamberg.de/#annotations)
- Schnell, Stefan. 2015. Multi-CAST Vera'a. In Haig, Geoffrey & Schnell, Stefan (eds.), Multi-CAST
- **Thieberger**, Nick & **Brickell**, Timothy. **2019**. Multi-CAST Nafsan. In Haig, Geoffrey & Schnell, Stefan (eds.), *Multi-CAST*.